Algebra/Topology Seminar

Hank Kurland
RPI

Intersection Pairings on Conley Indices

Thursday, March 14, 2013
1:15 p.m. in ES-143

Abstract. A vector field on a manifold M generates a flow in M and an invariant set S of the flow is isolated if it is the largest invariant set in some compact neighborhood of itself. Associated to S via the flow is a small category $\mathcal{C}(S)$, the Conley index of S, whose objects are compact pointed spaces called index spaces, and for any two index spaces X and Y, $\operatorname{morph}_{\mathcal{C}(S)}(X, Y)$ consists of a single homotopy class of a flow-defined homotopy equivalence from X to Y. This makes it possible to define reduced singular homology and cohomology modules of a Conley index. Reversing time in the flow (i.e., the vectorfield is replaced by its negative) leaves S an isolated invariant set of the time-reversed flow and associates to S a time-reversed Conly index $\mathcal{C}^{*}(S)$. In his book Lectures on Algebraic Topology, Dold defines intersection numbers and classes for two relative homology classes. I will review this material and use it to define an intersection number pairing on $\left[\tilde{H}_{*} \mathcal{C}(S) \otimes \tilde{H}_{*} \mathcal{C}^{*}(S)\right]_{m}$ where $m=\operatorname{dim}(M) \geq 2$ and a more general intersection pairing on $\tilde{H}_{*} \mathcal{C}(S) \otimes \tilde{H}_{*} \mathcal{C}^{*}(S)$ with values in the Čech homology of S. I'll outline how the intersection number pairing can be used to prove existence of solution to a two-point boundary value problem arising as the equilibrium equation of the heterozygote inferior case of a Fisher equation, namely,

$$
v_{t}=\varepsilon^{2} v_{x x}+v(1-v)(v-a(x)) \quad \text { where } 0<a(x)<1
$$

for a single allele in a 1-dimensional habitat with small genetic diffusion within the habitat, i.e., $0<\varepsilon \ll 1$, and no influx of genetic material from outside the habitat, i.e., Neumann boundary conditions. Key to the application is that the intersection pairing is invariant under continuation along a parameterized arc of isolated invariant sets arising from a corresponding arc of vector fields.

